
34 BETTER SOFTWARE OCTOBER 2007 www.StickyMinds.com

IS
TO
CK
PH

O
TO

Two types of code transformations are common in test-dri-
ven development (TDD). The first is refactoring, which
improves the code while preserving its behavior. The second is
generalization, which broadens the capabilities of the software.
Each has its place, and together they help make TDD effective.

Refactoring
Refactoring, as defined in Martin Fowler’s landmark book

Refactoring, is “the process of changing software systems in
such a way that it does not alter the external behavior of the
code yet improves its internal structure” (see the StickyNotes
for a reference). Thus, refactoring is an enabling tool for incre-
mental development—it gives us a mechanism to design
concurrently with development. There is a cycle to refactoring:

1. Identify a shortcoming in the code (often referred to as a
code smell).

2. Select a refactoring.
3. Apply the refactoring.
4. Repeat.

Let’s look at some code to see how refactoring can improve
it.

A STACK-BASED CALCULATOR
Early HP calculators were built around a stack that was ex-

posed to the user. This not only allowed users to enter complex
calculations but also let the calculator forgo the complexities
of parsing.

To calculate 3 * (7 + 2) you would enter the equivalent of:
3 Push 7 Push 2 + *

Had you wanted 3 * 7 + 2 you’d use:
3 Push 7 * Push 2 +

Each binary operator pops two values from the stack, com-
bines them, and pushes the result on the stack.

We’ll create a calculator along these lines. Listing 1 shows
the code for a key object, Calculator, early in its develop-
ment. Only “PUSH”, “+”, “*”, and digits are implemented.
This code was developed with TDD, so there are tests for each
of these aspects (not shown). It’s critical to have tests in
place—especially when refactoring manually—as they help en-
sure behavior doesn’t change unexpectedly.

IMPROVING THE CODE
To identify code smells, we can use the catalog in any of the

refactoring books, such as Refactoring, Refactoring to Pat-
terns, or Refactoring Workbook (see the StickyNotes for
references). Here are a few examples:

• Duplicated Code: add() and multiply() are very simi-
lar.

• Uncommunicative Name: Calculator is an overly
broad name.

• Divergent Change: Several decisions are folded together
in one class—what type object is being operated on, the
stack nature, and the application of operators.

www.StickyMinds.com OCTOBER 2007 BETTER SOFTWARE 35

Listing 1

import java.math.BigInteger;
import java.util.Stack;

public class Calculator {
final BigInteger emptyValue = new BigInteger(“0”);

Stack<BigInteger> values = new Stack<BigInteger>();
boolean topWasReplaced = false;

public Calculator() {
push();

}

public void push() {
push(emptyValue);

}

public void push(BigInteger value) {
values.push(value);
topWasReplaced = false;

}

public BigInteger pop() {
if (values.isEmpty()) return emptyValue;
return values.pop();

}

public BigInteger top() {
if (values.isEmpty()) return emptyValue;
return values.lastElement();

}

public void replace(BigInteger value) {
pop();
values.push(value);
topWasReplaced = true;

}

public void press(String value) {
BigInteger top = top();
StringBuffer buffer = new StringBuffer(

topWasReplaced ? top.toString() : “”);
buffer.append(value);
replace(new BigInteger(buffer.toString()));

}

public void add() {
BigInteger value2 = top();
pop();
BigInteger value1 = top();
pop();
push(value1.add(value2));

}

public void multiply() {
BigInteger value2 = top();
pop();
BigInteger value1 = top();
pop();
push(value1.multiply(value2));

}
}

36 BETTER SOFTWARE OCTOBER 2007 www.StickyMinds.com

public class Add {

. . .

public void add() {

BigInteger value2 = calc.top();

calc.pop();

BigInteger value1 = calc.top();

calc.pop();

calc.push(value1.add(value2));

}

}

MM-3 Compile Add; it’s fine.

MM-4 Delegate from Calculator’s add() to Add’s add():
but note that Calculator needs access to an instance of Add. I
think it will be most convenient if it’s a parameter to Calcula-
tor.add(). A caller of Calculator.add() can create a new
instance of the Add class and pass it in.

public void Calculator {

. . .

public void add(Add adder) {

adder.add();

}

}

MM-5 Compile and test; everything still works.

MM-6 Remove calls to the delegating method (on makeAdd-
Button(), as shown here, and a number of test cases that are
not shown):

private static JButton makeAddButton(

final String buttonName) {

. . .

• Complexity: The press() operation keeps track of
whether the stack was computed or entered. It looks a lit-
tle complicated (though this may be “just” domain
complexity).

• Primitive Obsession: BigInteger isn’t exactly a primitive,
but it’s close. The arithmetic operations may need to know
the type they’re dealing with, but the stack operations do
not. Note that Calculator’s press()method depends on
its ability to construct new instances of BigInteger.

To demonstrate refactoring, let’s get rid of some code duplica-
tion. Figures 1 and 2 show the simplified mechanics (based on
Fowler) for two refactorings we’ll apply: Extract Class and Move
Method. I’ll select the Extract Class refactoring to pull each oper-
ation into its own class. This gives us two benefits: It isolates the
duplication, and it separates the “operator” aspects from the
“stack” aspects, reducing the pressure for divergent change.

Now to apply the refactoring:

EC-1, EC-2 Create a new class for Add; give Add a link to
Calculator.

public class Add {

private Calculator calc;

public Add(Calculator calc) {

this.calc = calc;

}
}

EC-3 Move Field: There’s nothing to move in this case.

EC-5, MM-1 Move Method: Copy add() into Add:
public class Add {

. . .

public void add() {

BigInteger value2 = top();

pop();

BigInteger value1 = top();

pop();

push(value1.add(value2));

}

}

MM-2 Adjust the code for its new context:

Figure 1: Extract Class

EC-1. Create a new class for B.

EC-2. Give A a link to B; give B a link to A if needed.

EC-3. Move Field on any fields that should belong to B.

EC-4. Compile and test after each move.

EC-5. Move Method on any method that should belong to B.

EC-6. Compile and test after each move.

EC-7. In A, expose the reference to B if needed.

A A B

Figure 2: Move Method

MM-1. Copy the declaration and code for f() into B.

MM-2. Adjust the code to work in the new context.

MM-3. Compile B.

MM-4. Delegate from A’s f() to B’s f().

MM-5. Compile and test everything.

MM-6. Replace each call to A’s f()with a call to B’s f().

Test after each replacement.

MM-7. Remove A’s f()method.

MM-8. Compile and test.

A

f()

B

AA

f() { b.f(); }

B

f()

B

f()

new Add(calc).add();

. . .

}

MM-7 Remove the delegating method. There’s no
longer a method add() in Calculator.

MM-8 Compile and test; everything still works.

MM-1 through MM-8 Repeat all steps to create a
corresponding class Multiply.

The resulting code is shown in listing 2.

THINGS TO NOTICE
There are several things to notice about that brief

refactoring session.
The steps are fail-safe. At each point where some-

thing could go wrong, the refactoring mechanics make
it easy to recover. For example, when moving the
method from Calculator to Add, we copy the
method and adjust it to its new context before we get
rid of the original. Similarly, rather than call Add’s
add() directly, we take the detour of setting up a del-
egating method. This lets us confirm that the new
method works before we tangle that up with eliminat-
ing the delegate.

The steps are surprisingly small. Each step is small-
er and easier than it needs to be. By making the steps
“too easy,” we’re less likely to make a mistake. And if
we do mess up, a few Control-Zs can take us back.

The steps are boring, almost mechanical. This is
part of keeping the refactorings easy. But it’s also good
news for automation: If you’re programming in a lan-
guage such as Smalltalk, Java, or C#, your
environment probably has support for many automat-
ed refactorings. But not every useful refactoring will
be automated, so it’s worth internalizing the approach
so you can refactor well without tool support.

MOVING AHEAD
Let’s continue, removing the duplication in the new

Add and Multiply classes. Instead of listing the indi-
vidual steps as I did above, I’ll mention the refactorings as they
happen. We’ll work “at speed,” using automated refactoring
support where possible.

Note that add() and multiply() have the same shape.
We’ll install a common parent class, unify the interfaces, and
create a template method.

Move: Common parent class

public class BinaryOperator {}

public void Add extends BinaryOperator { … }

public void Multiply extends BinaryOperator { … }

www.StickyMinds.com OCTOBER 2007 BETTER SOFTWARE 37

This has no effect since the parent class is empty.

Move: Pull Up Field
Move field calc up to BinaryOperator, passed in to the

constructor.

Move: Form Template Method
This involves a number of small moves, but it will let us pull

the common code into the new parent class.

Move: Extract Method (as part of Form Template Method)
As in listing 3, extract a method combine() in each Add and

public class Add {
private Calculator calc;

public Add(Calculator calc) { this.calc = calc; }

public void add() {
BigInteger value2 = calc.top();
calc.pop();
BigInteger value1 = calc.top();
calc.pop();
calc.push(value1.add(value2));

}
}

public class Multiply {
private Calculator calc;

public Multiply(Calculator calc) { this.calc = calc; }

public void multiply() {
BigInteger value2 = calc.top();
calc.pop();
BigInteger value1 = calc.top();
calc.pop();
calc.push(value1.multiply(value2));

}
}

Listing 2

public void Add {

. . .

public void add() {

BigInteger value2 = calc.top();

calc.pop();

BigInteger value1 = calc.top();

calc.pop();

calc.push(combine(value1, value2);

}

public BigInteger combine(BigInteger value1, value2) {

return value1.add(value2);

}

}

Listing 3

The most conservative stance would be to require refactor-
ings to have no visible effect, taking everything into account. For
example, moving from using a single BigInteger to using a

stack changed the Calculator’s mem-
ory usage pattern significantly. Before
refactoring, only one value is remem-
bered; afterward, each value is
available in the stack. A program that
calls push() a few million times
might reveal the difference by running
out of memory. In some cases, chang-
ing the text of the code affects its
behavior. In “Reflections on Trusting
Trust,” Ken Thompson describes a
self-reproducing program. Refactoring
that would be tricky! Any everyday
refactoring would change its text and
break it.

In refactoring, the usual, if implicit,
answer to “What counts as an alter-
ation?” is “different behavior with
respect to an abstract model of how a
program works”—a model that ignores
memory limitations, performance, tim-
ing, threads, and other real-world
considerations.

Generalization
Refactorings are “behavior-pre-

serving transformations.” But there
are also interesting transformations
that do not preserve behavior. These
resemble refactorings in their mechan-
ics but not in terms of effects.

For generalization in TDD, one
type of transformation is particularly important—transforma-
tions that preserve the behavior of the tests we have but don’t
preserve the behavior with respect to all possible tests or inputs.
“Equivalent with respect to existing tests” means we can trans-
form our code in anticipation of a number of alternative future
tests.

There’s some risk in this. When we lift up some possible (not
yet existing) tests and say, “We can’t break these,” and lower
others and say, “But these can be broken,” we open ourselves up
to accidentally breaking some tests we had intended to keep
working. Generalization is worth the risk, as it leads to new be-
haviors that pure refactoring can’t reach.

In Test-Driven Development: By Example, Kent Beck identi-
fies three approaches to adding code:

1. Obvious Implementation—Just implement it.
2. Fake It ‘Til You Make It—Start with a simple (even trivial)

implementation that passes the test at hand, then repeated-
ly generalize the code until it passes more tests.

3. Triangulation—Generalize code to support two or more
tests.

These generalize from zero, one, or two cases, respectively.

38 BETTER SOFTWARE OCTOBER 2007 www.StickyMinds.com

Multiply. This highlights the part that varies between the
classes: Once you have two values, how do you combine them
into a new one?

Do the same for Multiply.

Move: Rename Method (as part of Form Template Method)
Rename add() to execute() in Add.
Rename multiply() to execute() in Multiply.
Move: Pull Up Method (as part of Form Template Method)
Create an abstract combine() method on BinaryOpera-

tor.
Move execute() from Add to BinaryOperator. Every-

thing tests OK.

Move: Remove Extraneous Method (as the final step of
Form Template Method)

Remove execute() from Multiply since this method is
identical to the one in the superclass.

Listing 4 shows our result.

WHAT COUNTS AS A REFACTORING?
Refactorings don’t “alter the external behavior of the code,”

and that raises the question “What counts as an alteration?”

public abstract class BinaryOperator {
protected Calculator calc;

public BinaryOperator(Calculator calc) { this.calc = calc; }

public void execute() {
BigInteger value2 = calc.top();
calc.pop();
BigInteger value1 = calc.top();
calc.pop();
calc.push(combine(value1, value2);

}

public abstract BigInteger combine(
BigInteger value1, BigInteger value2);

}

public void Add extends BinaryOperator {
public Add(Calculator calc) { super(calc); }

public BigInteger combine(BigInteger value1, BigInteger value2) {
return value1.add(value2);

}
}

public void Multiply extends BinaryOperator {
public Multiply(Calculator calc) { super(calc); }

public BigInteger combine(BigInteger value1, value2) {
return value1.multiply(value2);

}
}

Listing 4

currentValue = newValue;

}

Turn currentValue into a collection—a stack. Kent Beck
suggests an even safer approach: “At this point I would general-
ly keep duplicate copies of the data until I could prove that the
top of the stack was always the same as currentValue for the
test cases in question.” The result is shown in listing 7.

Though the method names imply the presence of a
stack, the tests we have so far don’t require one. The
generalization represents a conscious move toward the
design we want.

WAYS TO GENERALIZE
There are several ways objects get information:

Generalization uses the “trick” of shifting between
these. For example, first fake an answer by returning a
constant, and then move toward computing the same
value from input parameters. Following are several
ways to generalize:

INTRODUCE VARIABLES
If you’ve returned a constant (a quick “Fake It” answer), this

constant was chosen as a function of other variables or values. If
you can decompose this constant into its constituent parts,
you’ll often find that it’s computed from values the object is told
or remembers from being told before.

In Test-Driven Development, Kent Beck points out that if
you’re explicit about the way the constant is computed, you’ll
often see duplication between the expected value and the code
that you need—the code can be pushed into the same shape as
the answer. For example, 6 becomes 2*3 becomes width*3 be-
comes width*height.

SUBSTITUTE AN ALGORITHM
Another way to generalize is to implement a substitute algo-

rithm and then cut over to it. For example, you might replace a
simple string matcher with one that can match regular expres-
sions.

INTRODUCE A HIDDEN/HELPER CLASS
An object may not be sophisticated enough to do what you

want, but you may be able to find or create another object that
can help. There may be an internal transformation your object
can do. For example, consider a buffer-gap implementation that
an editor might use; it presents a normal coordinate system to its
users (insertion points 0, 1, 2, up to the length of the string), but
inside it maintains a second coordinate system (from 0 to the in-
sertion point, followed by a gap, then from some position later
to the end of the buffer). A buffer gap object can hide the map-
ping from the first coordinate system to the second one.

I visualize the “Fake It” process as a sort of geometric pro-
jection. Imagine a test as a 2-D figure. We’re trying to create a
3-D object with that figure as its shadow. When we fake it, the
object we create is like a cardboard cutout—the shadow is
right but the figure is a total cheat. But we can gradually re-
place parts of the cardboard with the real thing. The
unchanging shadow tells us we haven’t changed anything in-
correctly, at least from that test’s angle.

To see generalization in action, let’s look back at one of the
earliest steps in the evolution of the Calculator object, earlier
than that shown in listing 1. Listing 5 shows the Calculator
at that point.

Listing 6 shows a new test.

Add a stub method for push():
public void push() {

}

Make the test pass (“Fake It”) by setting currentValue:
public void push() {

currentValue = new BigInteger(“0”);

}

This keeps the old tests running. If I had made top() return
the 0 value, that would have broken other tests, and it would
push the system in a direction I didn’t want to go. To generalize:

Extract a new version of push():
public void push() {

push(new BigInteger(“0”));

}

public void push(BigInteger newValue) {

public class Calculator {

BigInteger currentValue = new BigInteger(“0”);

public BigInteger top() {

return currentValue;

}

public void press(String value) {

StringBuffer buffer = new StringBuffer(

top().toString());

buffer.append(value);

currentValue = new BigInteger(buffer.toString());

}

}

Listing 5

@Test

public void testPushedNumberGoesIntoStack() {

calc.press(“1”);

calc.push();

assertEquals(new BigInteger(“0“), calc.top());

}

Listing 6

• They’re given it (e.g., via a parameter to a method).
• They remember it (e.g., in a collection).
• They generate it (e.g., through calculation).
• They ask somebody else (e.g., call a method on
another object).

www.StickyMinds.com OCTOBER 2007 BETTER SOFTWARE 39

tation use the same code if conditions are right. A
null object (a real object that has no effect) is a
common way to do this. Or you may be able to
generalize code to cover more cases.

For example, one project I worked on had an
algorithm that looked for matches at particular
positions in a sequence. There was a subclass al-
gorithm that did a similar search but broadened
the list of candidates to include neighbors of the
original positions. We were able to reduce this to
one case—search within a specified distance. The
original “no-neighbor” case became a general
search with a “neighbor distance” of 0.

Conclusion
Systematic code transformations are an impor-

tant tool for TDD and elsewhere. Refactoring
provides us a systematic way to improve code,
supporting incremental development. Generaliza-
tion allows us to add new capabilities to our
software. The techniques are related, and both
belong in your repertoire. {end}

Bill Wake is a software coach and author. He manages software de-
velopment at Gene Codes Forensics, Inc., a bioinformatics
software company located in Ann Arbor, Michigan. Bill’s Web
site is www.xp123.com, and his email address is
William.Wake@acm.org. Bill thanks Tom Kubit, Kent Beck,
and an anonymous reviewer for their feedback on this article.

40 BETTER SOFTWARE OCTOBER 2007 www.StickyMinds.com

Sticky
Notes

For more on the following topic go to
www.StickyMinds.com/bettersoftware.

� References

0, 1, MANY
There’s an old guideline that says 0, 1, and many are the

easiest numbers to deal with. That’s true for generalization as
well. For example, if we’re implementing an operation on a
composite, we might generalize based on depth—moving from
handling a depth of one to handling arbitrary depths. As anoth-
er example, putting the stack in the Calculator let us move to
remembering many values. It’s common to move from handling
one object to handling many.

UNIFY SPECIAL CASES
Sometimes, you’ve got special treatment in two different

cases, but there’s a unification that lets two branches of compu-

Stack<BigInteger> currentValue = new Stack<BigInteger>();

public Calculator() {

currentValue.push(new BigInteger(“0”));

}

public void press(String value) {

StringBuffer buffer = new StringBuffer(top().toString());

buffer.append(value);

currentValue.pop();

currentValue.push(new BigInteger(buffer.toString()));

}

public BigInteger top() {

return currentValue.lastElement();

}

public void push(BigInteger newValue) {

currentValue.push(newValue);

}

Listing 7

