
IS
TO

CK
PH

O
TO

18 BETTER SOFTWARE JULY/AUGUST 2011 www.StickyMinds.com

Imagine a piece of software that works correctly and yet
doesn’t “feel” well written. How could you describe the
code’s quality in concrete terms? How do you convert the
vague notion—“this is poor code”—into a plan for fixing it?
Let us introduce a catalog of software design anti-patterns
called code smells and show how to use them both to describe

 www.StickyMinds.com JULY/AUGUST 2011 BETTER SOFTWARE 19

t = [] # tasks
skp = [] # skip count for each task
c = 0 # index of current task

print "TODO> "
STDOUT.flush
line = gets.chomp

while (!(line == "quit"))
 rest = line.sub(/[^]+ /, '') # remove command from front of line

 case line
 when /^todo/
 t << rest
 skp << 0

 when /^done/
 if (t.length > 0)
 t.delete_at(c)
 skp.delete_at(c)
 c = 0 if c >= t.length
 end

 when /^skip/
 if (t.length > 0)
 skp[c] = skp[c] + 1

 if (skp[c] == 3)
 puts "Too many skips; deleting - " + t[c]
 t.delete_at(c)
 skp.delete_at(c)
 c = 0 if c >= t.length
 else
 c = (c + 1).modulo t.length
 end

 end

 when /^list/
 puts t
 puts

 when /^$/
 # do nothing

 else
 puts "Unknown command. Commands: todo, done, skip, list, or quit"
 end

 if (t.length > 0)
 puts "Current: " + t[c]
 end

 print "TODO> "
 STDOUT.flush
 line = gets.chomp
end

Figure 1: todo.rb

software quality in concrete terms and to plan remedial ac-
tions for improving code.

What Is Code Quality?
In recent years, agile methods in general and test-driven

development (TDD) in particular have become significantly

more popular. The microprocess of TDD tells us to work to the rhythm of
red-green-refactor. Specifically, we write a test and see it fail; then, we write
code in the most straightforward way possible to make it pass; then, we
refactor to clean up any mess we made. But, in that third step, just what
should we refactor and why? And if we need to refactor a pile of code
that wasn’t developed in a test-driven manner, how do we get a handle on
where to begin?

Refactoring is defined as “improving software without changing what
it does.” The intent is to replace bad code with something better. The next
questions must then be: What is bad code and what is good code? How
can we recognize which is which? And, when we find bad code, what
should we do to eliminate it?

The first step is to understand why code quality matters. The answer
to that lies in our need to change the code in the future. If this code will
never be read again and if it will never be changed, then it only has to be
functionally correct. Such code can be messy and disorganized as long as
it functions correctly. But, if in the future someone needs to fix a bug, add
a new feature, or make a small tweak to the code’s behavior, then we need
good code. The moment we discover that the code is tortuous to navigate,
difficult to understand, or hard to change is the moment we wish it were
better written. Over and above functional correctness (which we take as a
given in this article), we can define software quality as the ability to change
the code easily: Good code supports change; bad code hampers change.

Exercise, Part 1
Before we go any further, look at the program in figure 1. This is a

small script written as a command line to-do list. The script is written in
Ruby but should be fairly easy to understand even if you are not familiar
with scripting languages. If you haven’t seen much Ruby, these hints will
get you through:
•	 The	 “case/when”	 block	 is	 similar	 to	 a	 “switch/case”	 statement	 in	

other languages (but with no fall-through from one case to the next).
•	 Arrays	(the	variables	initialized	to	“[]”)	have	a	“<<”	operator	that	

appends an item to the end of the array.
•	 Regular	expressions	are	bracketed	by	“//”	and	form	a	kind	of	pat-

tern object.

 The application is written as a big while loop, reading input lines and

interpreting them as commands. To use this tool, you add new tasks to the

20 BETTER SOFTWARE JULY/AUGUST 2011 www.StickyMinds.com

TODO> todo Make the bed
Current: Make the bed
TODO> todo Check email
Current: Make the bed
TODO> skip
Current: Check email
TODO> done
Current: Make the bed
TODO> todo Wash the dishes
Current: Make the bed
TODO> skip
Current: Wash the dishes
TODO> skip
Current: Make the bed
TODO> skip
Too many skips; deleting - Make the bed
Current: Wash the dishes
TODO>

Figure 2: A sample session

A Few ImportAnt SmellS
UncommUnIcAtIve nAme

What to Look For:
•	 One-	or	two-character	names,	vowels	omitted,	or	

misleading names

What to Do:

•	 Rename	the	variable,	class,	etc.

What to Look for Next:

•	 Duplication:	Look	for	places	where	the	same	thing	
has different names.

FeAtUre envy

What to Look For:
•	 Code	references	another	object	more	than	it	

references itself, or several clients manipulate a
particular type of object in similar ways.

What to Do:

•	 Extract	Method	to	isolate	the	similar	code.	
•	 Move	Method	to	put	it	with	the	referenced	object.

What to Look for Next:

•	 Duplication:	Look	for	further	duplication	around	
the clients.

•	 Communication:	Review	names	for	the	receiving	
class for consistency.

long method

What to Look For:
•	 A	method	with	a	large	number	of	lines	(five	lines	

is large in Ruby)

What to Do:

•	 Extract	Method	to	break	up	the	long	code.

What to Look for Next:

•	 Duplication:	Are	the	extracted	pieces	similar?	Can	
they	be	consolidated?	

•	 Communication:	Review	names	to	make	sure	they	
communicate well.

•	 Abstraction:	Is	there	a	missing	class?	
•	 Flexibility:	Is	there	Feature	Envy,	where	code	

seems more concerned with another class than
with	its	own	class?

dUplIcAted code

What to Look For:
•	 Code	that	is	nearly	identical	in	its	text	or	in	its	

effects

What to Do:

•	 For	code	with	similar	effects,	Substitute	Algorithm	
to make the code have similar text.

list via the “todo” command. See figure 2 for a sample session. Working
the list in order, you can either mark the current task “done” or skip it. If
you skip a task three times, it’s deleted; you’ll have to manually re-add it if
you intend to do it. If you move past the end of the list, you go back to the
first not-done task and start over. There are two other commands: “list”
prints a list of all incomplete tasks, and “quit” exits the system (losing all
the data—this code hasn’t addressed persistence; it’s just a simple example).

 You can download this code, along with some tests that demonstrate
its behavior, from the StickyNotes.

Take five minutes to look over the code and become familiar with it.
Now, imagine you have been given responsibility for the future mainte-
nance of this script. Review the code’s changeability in response to the fol-
lowing potential change requests:
•	 Add	persistence.	
•	 Add	a	more	sophisticated	user	interface	(web	or	GUI).
•	 Add	the	notion	of	a	recurring	task,	one	that	is	automatically	added	to	

the end of the list when it is marked “done.” (Think of a task that never
goes away, such as “check email.”)

•	 Change	 the	 rule	 for	 choosing	 the	next	 task.	For	example,	 try	an	“el-
evator” rule: At the end of the list, reverse direction rather than starting
back at the beginning.

•	 Keep	 completed	 tasks	 showing	 on	 the	 list	 until	 they’re	 specifically	
cleaned out (but never make them current tasks).

•	 Manage	a	separate	list	that	holds	deleted	tasks.	
•	 Gather	 statistics	 about	 tasks	 (e.g.,	 number	 of	 tasks	 completed	 vs.	

skipped, average time from task creation to completion).

Describe what qualities of the existing script might make those changes

difficult or easy. We’re not asking you to design the changes—just assess
which might be easy and which could be difficult and why. Better yet, do
this exercise with a partner or workgroup and discuss the changes you
would make. Go ahead, mark up the code. We’ll wait.

All done? How easy was that? What vocabulary did you use? If you’re
anything like us, you’ll now have notes about the code being “tangled” or
even “monolithic”—still a little vague and not a great contribution toward
an improvement plan.

The Language of Smells
To help with this difficulty, the agile community has developed an in-

formal catalog of the most common ways in which software can render
change	difficult.	These	problems	are	often	called	“code	smells,”	after	Kent	
Beck’s	 analogy	 between	 code	 and	 babies—“If	 it	 stinks,	 change	 it”	 [1].	
Most smells are either problems of poor communication (because it’s hard
to change code you don’t understand) or duplication (which more than
doubles the risk of making the changes).

Each code smell has an indicative name, a set of tell-tale symptoms so
you can spot it easily, an indication of what refactorings you can do to re-
move the smell, and an indication of what other smells you might want to
look for next. We’ve outlined a few smells in the sidebar.

Exercise, Part 2
Using	the	smell	descriptions	in	the	sidebar	as	a	guide,	revisit	the	to-do	

list script in figure 1 and identify any smells you can. Again, work in a dis-
cussion group if you are able. Come back when you’re done.

How was the exercise this time? At this point, the smells catalog gener-
ally provides a number of benefits. First, our search for problems was more
focused because we knew what symptoms to look for. Second, we were

 www.StickyMinds.com JULY/AUGUST 2011 BETTER SOFTWARE 21

•	 For	duplication	within	a	class,	Extract	Method	to	
isolate common parts.

•	 For	duplication	among	sibling	classes,	Pull	Up	
Method and Pull Up Instance Variable to bring
common parts together. Consider whether there
should be a Template Method.

•	 	For	duplication	among	unrelated	classes,	extract	
the common part into a separate class or module,
or consolidate code onto one class.

What to Look for Next:

•	 Abstraction:	Look	for	related	responsibilities	and	
missing abstractions.

greedy modUle

What to Look For:
•	 A	method	with	more	than	one	responsibility	

(especially decisions that will change at different
frequencies)

•	 Clumsy	test	fixture	setup

What to Do:

•	 Extract	Class	or	Extract	Module	to	split	up	the	
module.

What to Look for Next:

•	 Communication:	Review	names	to	make	sure	they	
communicate well.

•	 Simplicity:	Check	for	Feature	Envy.	
•	 Testability:	Simplify	the	unit	tests.

open Secret

What to Look For:
•	 Several	classes	or	modules	know	how	to	interpret	

a simple value.
•	 Several	classes	or	modules	know	what	data	is	

held in each slot of an array or hash.

What to Do:
•	 Extract	Class	or	Introduce	Parameter	Object	to	

consolidate the interpreting code.
•	 For	an	array	or	hash,	Replace	Array	(or	Hash)	with	

Object.

What to Look for Next:

•	 Duplication:	Look	for	Feature	Envy	around	the	new	
class.

•	 Communication:	Review	related	names	to	make	
sure they communicate well.

•	 Flexibility:	Consider	whether	the	new	object	can	
be used earlier in time.

(SUmmArIzed From RefactoRing in Ruby [2])

22 BETTER SOFTWARE JULY/AUGUST 2011 www.StickyMinds.com

able to be more precise about the code’s problems and where
they occurred. And finally, we had the beginnings of an action
plan—a list of things to do that might help this code become
more adaptable to future change.

Here are some problems we found with the to-do list script:

Uncommunicative Names—t, skp, and c are too short
to communicate their roles.
Comments—The code isn’t self-explanatory enough.
Long Method—The whole thing is written as one big
script; some code is nested four levels deep (while /

1. Rename Variable—changed t to task_list
2. Rename Variable—changed skp to skip_counts
3. Rename Variable—changed c to current_task_index
4. Extract Method—created a next_line method that prompts the user and returns a String of input text; used in two

places in the script
5. Extract Class—created a TodoList class; assigned a singleton instance to a constant
6. Move Field—moved task_list to be a field @task_list on TodoList
7. Move Field—moved skip_counts to be a field @skip_counts on TodoList
8. Move Code—moved the code that parses the arguments into the branch for the “todo” command
9. Extract Method—created append_task, called from the “todo” branch of the case
10. Move Method—made append_task a method on TodoList
11. Extract Method—created delete_task, called from the “done” and “skip” branches of the case
12. Move Method—made delete_task a method on TodoList
13. Extract Method—created length, called from the “done” and “skip” branches of the case
14. Move Method—made length a method on TodoList
15. Move Code—moved the wrap-around check on current_task_index outside of the case statement
16. Move Field—moved current_task_index to be a field @current_task_index on TodoList
17. Remove Parameter—TodoList.delete_task can use @current_task_index instead of taking a parameter
18. Extract Method—created current_task_description, called from the “skip” and “list” branches of the case
19. Move Method—made current_task_description a method on TodoList
20. Extract Method—created skip_current to hold the body of the “skip” branch of the case
21. Move Method—made skip_current a method on TodoList
22. Replace Conditional with Guard Clause—inverted the check at the top of skip_current in order to reduce the

nesting levels in that method
23. Extract Method—created check_for_current_overflow, called from TodoList.delete_task and TodoList.

skip_current

24. Extract Surrounding Method—created private method TodoList.edit_list, which yields to a supplied block only
if @task_list is non-empty, and then wraps @current_task_index around to the top afterwards if necessary; called
from TodoList.skip_current and TodoList.delete_current_task

25. Inline Method—inlined TodoList.check_for_current_overflow into its only caller, TodoList.edit_list
26. Remove Method—deleted the public getters and setters for @skip_counts and @current_task_index as these fields

are no longer used outside of the TodoList class
27. Extract Method—created a to_s method to return a String listing the tasks
28. Move Method—moved to_s into TodoList
29. Remove Method—deleted the public getter and setter for @task_list as this field is no longer used outside of the

TodoList class
30. Extract Method—created a empty? method to indicate whether the list has any tasks; called from two places in the

main loop
31. Move Method—made empty? a method on TodoList
32. Remove Method—TodoList.length is no longer needed
33. Extract Method—created an execute(command, arg) method containing the whole of the case statement; returns

true to continue, or false if the user wants to quit

Figure 3: Refactoring change log

case / if / if).
Magic Number—“3” is the number of times a task
is skipped before it’s deleted. English text appears in
strings and patterns (limiting internationalization).
Duplicated Code—Sometimes we have literal duplica-
tion (like the prompt and line fetching code or the way
tasks are deleted). Other times, it’s more subtle, such as
the two ways used to wrap around when we hit the end
of the list (explicitly checking and setting to zero, or
using the modulus operation).
Greedy Module—The user interface (such as it is) is

 www.StickyMinds.com JULY/AUGUST 2011 BETTER SOFTWARE 23

mixed up with the business logic, even though these
two aspects of the code will change in different direc-
tions at different times in response to different forces.
Open Secret—A task is maintained as a string, and the
list is maintained as a pair of arrays and a counter. Note
how the two arrays are kept parallel.
Feature Envy—Chunks of the code want to “live with”
the tasks list.

Note that by naming the smells, we have made them more
tangible and more precisely located the code’s problems.
Now, by collecting the various “What to Do” notes from the
smells we found, we can begin to select a few first refactoring
actions. In order to address the smells we found, we’d likely
make the names longer and more descriptive of the program’s
design, pull out a TodoList class, and perhaps pull out a
Task class.

This plan derives directly from knowledge of the code
smells. The smells catalog has helped us review the code,
communicate clearly about its problems, and form an action
plan for refactoring it. See figure 3 for a log of the detailed
changes made during our most recent run at tidying up the
basic smells in this code.

After these steps, the code is simple and clean. The me-
chanics of dealing with the list are hidden inside the
TodoList class, which has no public fields, and those me-
chanics are nicely separated from the tool’s user interface. We

For more on the following topics, go to
www.StickyMinds.com/bettersoftware.
n	 Todo.rb and demonstration tests
n	 References

Learn more about SmarteSoft’s
Test Solutions and the real cost
of software defects
www.smartesoft.com/testsolutions.php
+1.512.782.9409

Total Test Solutions, Unparalled Value

Software Quality
Assurance Challenge:
• deliver the best quality

software product
• on time
• on budget

The Solution to
Test Challenges:
• manage the test

lifecycle process
• implement the best

test methods
• reduce timelines,

improve schedule
predictability

• execute effectively
• reduce cost of test

SmarteSoft’s tools and
services support you at every
step of the process with com-
prehensive automated testing
solutions based on proven
best practice methodologies
– dramatically increasing
test success.

SmarteSoft Total
Test Solutions for:
• Functional Test
• Performance Test
• Regression Test
• QA Management

Whether you have never tested software
before or have tested your product manually
– or with a mix of manual and automated
methods – SmarteSoft’s easy-to-use tools
and services will provide the boost you need
to achieve dramatic success.

never found a need to move to the third step of the plan and
extract a Task class; you could do that yourself as an exercise.

As a footnote to the refactoring log: Ten of the thirty-three
steps used Extract Method, and twenty-two of the thirty-three
were operations on whole methods. Methods are fundamental
units of code reuse, which means that the remedies for most
code smells involve creating or manipulating methods. We
performed thirty refactorings on methods in order to extract
and encapsulate one class. While this seems like a lot, many
were quite small steps, and all followed the basic recipe set out
in Refactoring in Ruby for fixing the Greedy Module smell.

Conclusion
Code smells form a vocabulary for discussing code quality,

and, hence, for describing how well suited code might be to
change. The smells also provide good indications as to what
to refactor and how. Learn the language of code smells to get
started on refactoring—the road to faster development. {end}

william.wake@acm.org
kevin@rutherford-software.com

